SESSION OUTCOMES:

- Participants will gain an understanding of the Americans with Disabilities Act (ADA) Title II requirements for state-run universities and the intersection between higher education programs and facilities in the overarching priority of Program Accessibility.
- Participants will be introduced to the principles of Universal Design and how these principles can be easily incorporated in new construction projects.
- Participants will learn the steps involved in conducting a comprehensive ADA assessment of a state-run campus.
- Participants will understand how to engage campus stakeholders in the process to inform them of the importance of this project and commitment to create an accessible campus.
Georgia Tech provides a focused, technologically based education to more than 21,500 undergraduate and graduate students.

Georgia Tech has many nationally recognized programs and is ranked in the nation’s top 10 public universities by U.S. News and World Report.

Characterized today by a commitment to diversity of the student body and by excellence in its innovative and environmentally sustainable campus (Tree Campus USA, Bee Campus USA) of 400 acres and over 200 buildings.
An international education and design non-profit, headquartered in Boston, dedicated to enhancing the experience of people of all abilities, ages and cultures through excellence in design.

www.HumanCenteredDesign.org
SCOPE OF WORK:

COMPREHENSIVE ACCESSIBLE COMPLIANCE SURVEY WITH AN EMPHASIS ON UNIVERSAL DESIGN AS A COMPLEMENT TO GEORGIA TECH’S COMMITMENT TO EXCELLENCE IN DIVERSITY.

- Programs
- Facilities
- Outdoor Areas
- Graphics/Signage/Wayfinding
- Digital Environment (Websites, Distance Learning)
FEDERAL CIVIL RIGHTS LAWS REQUIRING ACCESSIBILITY THAT APPLY TO HIGHER EDUCATION

- Section 504 of the Rehabilitation Act (1973) U.S. Department of Education regulation
- Americans with Disabilities Act (1990) U.S. Department of Justice regulations

NOTE: The design standards in the Georgia Accessibility Code are required to meet the minimum requirements of the 2010 ADA Standards for Accessible Design
WHOSE CIVIL RIGHTS?

- Students
- Visitors
- Staff & Faculty
STUDENTS WITH DISABILITIES IN HIGHER EDUCATION

- In 2012, about **11% of undergraduate students** reported a disability. *(Note: self-report, likely undercount)*

- Undergraduates with disabilities are older than those without disabilities and are slightly more likely to attend a 2-year institution.

- **1 in 4 undergraduates with a disability enrolls in a STEM field**, a proportion that is similar to those without disabilities.

- About **7% of graduate students** reported a disability in 2012

- Graduate students with disabilities are as likely as those without disabilities to enroll in a STEM field (about 20%).
APPLICABLE STANDARDS FOR ADA TITLE II COMPLIANCE:

- The 2010 ADA Standards now apply to **new construction**, **alterations**, AND...must be used for **corrective actions** if existing buildings are not compliant.

- Entities that meet the 1991 ADA Standards in existing facilities only have to make changes to those items that are not under the safe harbor in the 2010 ADA Standards (e.g., swimming pools, residential facilities, exercise machines and equipment).
APPLICABLE STANDARDS FOR 504 COMPLIANCE:

- The U.S. Department of Education has authorized the use of the 2010 ADA Standards instead of the Uniform Federal Accessibility Standards (UFAS).

- As each federal agency write its own Section 504 regulation, universities must ask each agency providing funding if the agency allows the use of the 2010 ADA Standards (e.g., NSF, NIH, NEH) or if it requires use of UFAS.
THE IMPORTANCE OF PROGRAMS

PROGRAM ACCESSIBILITY

- No person with a disability can be denied access to programs because facilities are inaccessible or unusable by individuals with disabilities.
- Programs must be offered in the most integrated setting appropriate.
PROGRAM ACCESSIBILITY DOES NOT:

- Necessarily require making every existing facility accessible;

- Require a university to threaten or destroy the historic significance of an historic property; or

- Require an action that is a fundamental alteration or undue burden.
PROGRAM ACCESSIBILITY AND CIVIL RIGHTS LAWS

- Section 504 became law 43 years ago (1973)
- The ADA became law 26 years ago (1990)
- BUT, if you built facilities after the ADA 1992 effective date, and they don’t comply...
5 ADMINISTRATIVE REQUIREMENTS IN THE ADA TITLE II (1991 REGULATIONS)

1. Designate a responsible employee as the “ADA Coordinator”
2. Establish and publicize a Grievance Procedure specifically for ADA compliance issues.
3. Provide Notice to the Public: Issue a public statement of ADA Compliance to be made across multiple platforms (Print, Auditory, Website, etc.)
4. Conduct a Self-Evaluation—an assessment of all programs, services to identify any barriers to participation by people with disabilities.
5. Develop a Transition Plan that identifies the architectural barriers that impact access to programs & activities by a public entity.
PRINCIPLES OF UNIVERSAL DESIGN

Beyond barrier removal toward designing places that facilitate integrated experiences that work seamlessly for everyone.

[Developed by a group of US designers and design educators from five organizations in 1997. Principles are copyrighted to the Center for Universal Design, School of Design, State University of North Carolina at Raleigh. The Principles are in use internationally.]
UNIVERSAL/INCLUSIVE DESIGN IN RELATION TO ACCESSIBILITY:

- Inclusive Design begins on the floor of accessibility.

- It anticipates the real diversity of our times - the vision of inclusion rather than “tell me what I have to do.”

- Assumes that solutions that work for people at the edges of the spectrum work better for everyone.

- It is imaginative and creative - not fixed standards but a focus on measuring results for people: guidance to achieve better experiences for everyone.
EXAMPLES OF UNIVERSAL DESIGN

Entrance Everyone Can Use with Clear Signage

Automatic Door Opener with a Sensor
FOCUS AREAS OF ACCESSIBILITY AT GEORGIA TECH

We hired the Institute for Human Centered Design to develop a holistic self-evaluation of institutional accessibility.
ENTRANCE STUDIES OF GEORGIA TECH BUILDINGS

STUDENT SUCCESS CENTER
GIS MAPPING ACCESSIBLE PARKING

Administration Area Parking Availability: August 2013

Current Parking Space by Type
- Handicapped (22)
- Normal (257)
- Reserved (73)
- Service (15)
- Tech Tower Area
- Buildings

[Map of the Administration Area with parking availability details]
18-REPORTS ON PROGRAM ACCESS, WEBSITE REVIEW, WAYFINDING, GRAPHICS, ETC.
Order of Magnitude Cost Estimates

Lyman Hall
- Signage: $671
- Two compliant service counters: $850
- A cane-detectable barrier: $510
- A walk-off mat: $180
Total: $2,191

Emerson
- Alterations to 4 toilet rooms: $11,824
- An automatic door opener with standby power: $1,500
- Two accessible service counters: $850
- Miscellaneous corrective actions (signage, walk-off mat, protection for exposed lavatory-plumbing): $735
Total: $14,609

Lyman/Emerson Addition
- Alterations to elevator: $1,720
- Automatic door opener with standby power: $1,326
- Signage and walk-off mats at entrances: $989
- Miscellaneous corrective actions (cane-detectable barrier, 3 accessible emergency exit signs): $917
Total: $4,854

Total: $21,954
Academic Support Buildings
Building 029A Lyman Hall

<table>
<thead>
<tr>
<th>ID</th>
<th>Location</th>
<th>Floor</th>
<th>Room</th>
<th>Element</th>
<th>Type</th>
<th>Photo</th>
<th>Issues</th>
<th>Current Measure</th>
<th>Recommendations</th>
<th>Quantity</th>
<th>Price</th>
<th>Cost Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>029A-002</td>
<td>Multiple</td>
<td>3</td>
<td>N/A</td>
<td>Door</td>
<td>Door</td>
<td></td>
<td>Door requires > 5 pounds of force to open</td>
<td>15 lbs</td>
<td>Adjust closer to interior doors do not require more than 5 pounds of force</td>
<td>6</td>
<td>Labor</td>
<td>$0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interior Route</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>029A-022</td>
<td>At historic entrance lobby</td>
<td>2</td>
<td>207</td>
<td>Interior Route</td>
<td>Interior Route</td>
<td></td>
<td>Vertical clearance > 27" or < 86" high</td>
<td>--</td>
<td>At the underside of the stair, install a railing to serve as a curb detectable warning where the headroom is below 86" above the floor</td>
<td>1</td>
<td>810</td>
<td>$510</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Service Counter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>029A-018</td>
<td>Bursar's Office</td>
<td>G</td>
<td>111</td>
<td>Service Counter</td>
<td>Service Counter</td>
<td></td>
<td>Counter > 96" high</td>
<td>42"</td>
<td>Redesign the counter to be compliant.</td>
<td>1</td>
<td>425</td>
<td>$425</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>029A-014</td>
<td>Bursar's Office</td>
<td>G</td>
<td>1115</td>
<td>Service Counter</td>
<td>Service Counter</td>
<td></td>
<td>Counter > 96" high</td>
<td>58"</td>
<td>Redesign the counter to be compliant.</td>
<td>1</td>
<td>425</td>
<td>$425</td>
</tr>
</tbody>
</table>
SURVEY OF 400 ACRE CAMPUS DIVIDED INTO SECTORS A-Q

TECHNOLOGY SQUARE
CAMPUS ACCESSIBILITY MAP (TECHNOLOGY SQUARE)
COMMON ACCESSIBILITY BARRIERS FOUND ON THE SIDEWALKS AND RAMPS AT GEORGIA TECH
VIDEO OF PUBLIC PRESENTATION

All BUILDING CATEGORIES AND SECTOR PLANS ARE AVAILABLE FOR REVIEW
TOOLS FOR LIFE

MISSION

To help Georgians with disabilities gain access to and acquisition of assistive technology devices and assistive technology services so they can live, learn, work and play independently in the communities of their choice.
Georgia Tech has led a national effort to engage the computer science & engineering communities in developing technology for autism. $10 million & a 5-year award from NSF Expeditions in Computer Program.

In 2002, Professor Gregory Abowd was working on research at the AARIE Home, which he had founded two years prior, designed to help people live in place. The project involved assistive technology. As he began associating his own family members, he noticed something peculiar, something that would drive his research for years to come.

His oldest son was 5 years old at the time and had been diagnosed with autism. As Abowd watched the growing requirements of his son through the years, he noticed that when the boy was 18 months old he behaved just like any other toddler, but as a 10-year-old just eight months later, he seemed like a completely different child.

“He was exhibiting classic signs of autism,” Abowd explained. “He was doing those verbal whirring sounds and was holding his hand, and he was generally not happy to be around other people and engaging with them.”

Abowd’s research focused on a research focus that spread to a host of other professions, scientists, and students in the College of Computing. Autism work at Tech now aids the genome from helping diagnose disease and manage the disorder to infusing research in artificial intelligence.

“I didn’t really have a clear goal of what I was going to accomplish,” Abowd said, “but I knew I was going to contribute to people who presented challenges in the autism space and figure out how to give them their role.”

Building Tools for Now

Autism and autism spectrum disorder are among the largest groups of disorders of brain development characterized by repetitive behavior and difficulty in social interaction and communication. A person with autism spectrum disorder:
Robotics Lab Projects...

DURUS
Walks like a Human

www.bipedalrobotics.com
Distinguishing Assets to Success:

- Leadership at the top and a commitment to excellence and inclusion (ADA Compliance Coordinator)
- Develop a Holistic Approach to ADA accessibility
- Understanding the Existing Conditions of your campus is the #1 STEP (Programs, Websites & Physical Environment)
- 21st century diversity in higher education demands a new quality of attention to inclusion & diversity
Thank you!
Questions?

Institute for Human Centered Design