New lunar sample research could help protect astronauts and uncover the origins of water on the moon

Dust and rocks residing on the surface of the moon take a beating in space. Without a protective magnetosphere and atmosphere like Earth’s, the lunar surface faces continual particle bombardment from solar wind, cosmic rays, and micrometeoroids. This constant assault leads to space weathering. 

New NASA-funded research by Georgia Tech offers fresh insights into the phenomenon of space weathering. Examining Apollo lunar samples at the nanoscale, Tech researchers have revealed risks to human space missions and the possible role of space weathering in forming some of the water on the moon. 

Most previous studies of the moon involved instruments mapping it from orbit. In contrast, this study allowed researchers to spatially map a nanoscale sample while simultaneously analyzing optical signatures of Apollo lunar samples from different regions of the lunar surface — and to extract information about the chemical composition of the lunar surface and radiation history. 

The researchers recently published their findings in Scientific Reports

“The presence of water on the moon is critical for the Artemis program. It’s necessary for sustaining any human presence and it’s a particularly important source for oxygen and hydrogen, the molecules derived from splitting water,” said Thomas Orlando, Regents’ Professor in the School of Chemistry and Biochemistry, co-founder and former director of the Georgia Tech Center for Space Technology and Research, and principal investigator of Georgia Tech’s Center for Lunar Environment and Volatile Exploration Research (CLEVER).

Read the full story here!

New Algorithms Developed at Georgia Tech are Lunar Bound

AE researchers have developed new algorithms to help Intuitive Machine’s lunar lander find water ice on the Moon.  

In the past five years, five lunar landers have launched into space, marking a series of first successful landings in decades. The future will see more of these type of missions, including NASA’s Artemis program and various private ventures. These missions need reliable and quick navigation abilities to successfully complete missions, especially if ground stations on Earth are overburdened or disconnected. 

Georgia Tech’s Space Exploration and Analysis Laboratory (SEAL) has developed new algorithms that are headed to the Moon, as part of the Intuitive Machine’s IM-2 mission. The mission is sending a Nova-C class lunar lander named Athena to the Moon’s south pole region to test technologies and collect data that aim to enable future exploration. The mission is part of NASA’s Commercial Lunar Payload Services (CLPS) initiative.

Read the full story here.

AE Professor Masatoshi Hirabayashi Studies Compelling Way to Deflect Asteroids From Earth

Small rocks and debris fly near Earth, many just passing by. Some, however, come too close to Earth, with a potential threat of collision. Defending Earth from these unwanted objects is a growing concern globally. Planetary defense explores threat characterization, risk mitigation, and policy to defend Earth. One mitigation approach is sending an impactor to collide with the target object to deflect its trajectory from the original course toward Earth. This approach, known as kinetic deflection, is practical for intruders with a diameter up to a few hundred meters.

NASA’s Double Asteroid Redirection Test (DART), led by Johns Hopkins University’s Applied Physics Laboratory, was the first full-scale kinetic deflection mission to test how kinetic deflection could effectively push an asteroid measuring 150 meters in diameter. The 580-kg spacecraft (impactor) collided with the target asteroid, Dimorphos, at a speed of 6.1 km/second on September 26, 2022, making the target’s speed 2.7 mm/s. This speed change could gradually make the course deviate from the original one. The more time that elapses after impact, the further it moves away from the Earth. Even though Dimorphos was not a threat before the impact, it was chosen as a test target for DART’s kinetic deflection test.

Georgia Tech Professor Masatoshi Hirabayashi’s critical contribution to DART was recently published in Nature Communications. The study, “Elliptical ejecta of asteroid Dimorphos is due to its surface curvature” analyzed the behavior of fragments coming out by the high-speed DART impact and their push of the asteroid. This work was in collaboration with Professor Fabio Ferrari from Politecnico di Milano, who jointly published the study, “Morphology of ejecta features from the impact on asteroid Dimorphos.”  

Imagine a cannonball flying through the air and hitting a concrete wall. The wall shutters and fragmented pieces disperse at high speeds. Those smaller fragments, called ejecta, are known to be a key factor in controlling the asteroid push.

The study found that the ejecta from the impact site on Dimorphos highly depends on the asteroid’s shape. As a rule of thumb, a cannonball hitting a flat concrete wall creates ejecta departing from the wall at an angle of about 45 degrees from the wall’s surface. The cloud of ejecta thus looks like a waffle cone. However, if the concrete wall’s surface is tilted against the impact direction, the fragment ejection changes, making the ejecta structure differ even if the impactor has the same mass and speed. 

“This changes the asteroid push dramatically. Dimorphos has a squashed round shape, like an M&M,” Hirabayashi explained, “If the impact is large, more ejecta fly out of the surface but are more affected by surface tilts. This process makes the ejecta deviate from the ideal direction, reducing the asteroid push.” 

For the DART impact on Dimorphos, the study identified the impact scale and the asteroid’s rounded surface lowered the asteroid push by 56% compared to when Dimorphos was tested as an entirely flat wall. Thus, sending a large impactor does not mean a big push, and considering how to send impactors strategically is necessary. One way to keep the asteroid push effective is to send multiple small impactors rather than a single large impactor. This way, each small impactor may avoid the target’s rounded shape, and the net asteroid push by multiple impacts can be more efficient than the single impactor.

Read the full story here.

AE, BME Students Named 2025 Brooke Owens Fellows

Three Georgia Tech students will receive paid internships, executive mentorship, and industry connections to leading aerospace organizations.

Three Georgia Tech engineering students have been named to the 2025 class of Brooke Owens Fellows, a nationally competitive program that supports exceptional undergraduate women and gender minorities in aerospace with paid internships and executive mentors.

Andra Oltean, Catherine Fang, and Sara Kapasi join 44 other undergraduates from around the country in the ninth cohort of fellows. Oltean and Fang are studying aerospace engineering; Kapasi is a biomedical engineering student. They join a long list of Georgia Tech students perennially selected for the “Brookies.”

Founded in 2017, the fellowship honors the legacy of space policy expert and pilot Brooke Owens by empowering the next generation of aerospace industry leaders. Fellows gain hands-on experience through internships at leading aerospace organizations and receive guidance from mentors who are top executives, astronauts, and innovators in the field.

Read more here.

Turning to CubeSats in the Search for Life Thousands of Light-Years from Earth

Georgia Tech plays a starring role in NASA’s STARI mission to determine if telescope technology that studies exoplanets can be implemented in briefcase-sized spacecraft. 

A new NASA-funded project will have Georgia Tech aerospace engineers developing new technology to one day study planets outside our solar system. 

It’s a $10 million joint mission led by the University of Michigan called STARI — STarlight Acquisition and Reflection toward Interferometry. Georgia Tech’s engineers will build the propulsion systems for a pair of briefcase-sized CubeSats that will fly in orbit a few hundred yards away from one another, bouncing starlight back and forth. 

The technology could be used someday to better understand if any known exoplanets are capable of supporting life as we know it.

Interferometry is already used to study stars, gas clouds, and galaxies. Instead of using one large telescope, several smaller telescopes work as a team. The machines swap starlight to create higher resolution images than are possible from a single telescope. 

Scientists and engineers have recently proposed using interferometry to locate exoplanets. 

STARI will determine if the same type of coordination and light transmission can be done using less expensive CubeSats. Although STARI won’t peer at exoplanets, it will test the ability of small satellites to gather light into a hair-like optical fiber, then beam that light to a partner up to 100 meters away.

Click here to read the full story.

Georgia Tech Space Research Institute Begins Search for Executive Director

The Space Research Institute (SRI) at Georgia Tech has initiated an internal search for its inaugural executive director. This new Interdisciplinary Research Institute (IRI) will build upon the foundation laid by the Space Research Initiative.

The SRI is dedicated to advancing cutting-edge research in space-related fields, fostering interdisciplinary collaborations, and establishing strong partnerships with industry, government, academic, and international organizations. As leader of the newly established IRI, the executive director will lead the Institute’s strategic vision, nurture a culture of innovation, and champion initiatives that position Georgia Tech, via the SRI, as a global leader in space research and exploration.

The SRI is composed of faculty and staff across campus who have a common interest in space exploration and discovery. Collectively, SRI will research a wide range of topics on space and how it relates to human perspective and be an ultimate hub of all things space related at Georgia Tech. It will connect all the research institutes, labs, facilities, and colleges to pioneer the conversation about space in the state of Georgia. By working hand-in-hand with academics, business partners, and students we are committed to staying at the cutting edge of innovation. 

Click here to learn more about this position and how to apply.

News Contact: For any further details, please contact Rob Kadel at Rob Kadel.

Original story published here.

Why Does a Rocket Have to go 25,000 mph to Escape Earth?

A SpaceX Falcon 9 rocket with its Crew Dragon capsule launches from Cape Canaveral, Fla., in January 2024. Chandan Khanna/AFP via Getty Images

Why does a rocket have to go 25,000 mph (about 40,000 kilometers per hour) to escape Earth? – Bo H., age 10, Durham, New Hampshire

There’s a reason why a rocket has to go so fast to escape Earth. It’s about gravity – something all of us experience every moment of every day.

Gravity is the force that pulls you toward the ground. And that’s a good thing. Gravity keeps you on Earth; otherwise, you would float away into space.

But gravity also makes it difficult to leave Earth if you’re a rocket heading for space. Escaping our planet’s gravitational pull is hard – not only is gravity strong, but it also extends far away from Earth.

Read the full story here.

In a Very Close Galaxy: How Georgia Tech Researchers Use Earth Analogs to Understand Space

From deserts in Arizona to salty lakes in Canada, these environments give scientists an idea of what Mars and Jupiter’s moons might be like.

The surface is covered with fine ash. The lava fields stretch for miles, punctuated only by basalt mountains. But life could be found here if you look hard enough.

This barren land isn’t Mars or Pluto, but volcanic deserts in Iceland. The environment is so comparable to Mars’ arid landscape that researchers can use it as an analog. From Earth, they can extrapolate how planets in our galaxy and beyond could sustain life and what tools humans might need to make homes on these planets.

Georgia Tech researchers explore everywhere from Oregon’s mountaintops to Arizona’s deserts to better understand space — and life on this planet.

Click here to read the full article.

Space Race: Georgia Tech’s Aspiring Astronauts

Jud Ready always wanted to be an astronaut.

“From first grade forward, that’s what I planned to do,” said Ready, principal research engineer at the Georgia Tech Research Institute and adjunct professor in the School of Materials Science and Engineering. “While studying engineering in college, I realized I didn’t want to build the spaceship. I wanted to work inside the spaceship.”

Glenn Lightsey, interim director of Georgia Tech’s Space Research Initiative, had similar aspirations. Both men tried to follow their dreams to the stars. But life presented them with alternative plans.

Read the full story here.